2020年7月28日火曜日

【実測シリーズ】Surfgauge 試作室_せん断ひずみによる、動的粘弾性の測定


以前、
【実測シリーズ】コロナ自粛期間中 速報的 液膜粘弾性の測定
では、液膜の動的粘弾性の測定の実施例について、投稿をいたしました。

掲載しているデータは、マランゴニ効果、ギブス弾性力による、現象面視点の説明
からは、理にかなっているのでは、と、まとめました。

しかし、液膜を直接、延伸・収縮させる動作から、動的粘弾性の測定原理を利用し、
動的粘弾性パラメータを得て、解析、という実例が見つからないため、このデータの
妥当性が、よくわからないところはあります。

動的粘弾性の測定原理ついては、
粘弾性について6)_動的粘弾性の測定原理
をご参照ください。

このページでも解説している通り、応力とひずみ、両正弦波の振幅の比と、位相の差
が得られれば、動的粘弾性の測定、解析は可能です。

あるデータ範囲において、二つの波形それぞれの振幅値を検出し、その比をとって
複素弾性率を解析することは、システムとして、さほど難しいことではありません。

問題は、位相差の正しい測定と、その検証ではないかと思います。

動的粘弾性測定器は、主に、荷重(力)、位置の二つのセンシングデータを取得し、
後は、ほぼすべて、計算のみで成立しています。

システムは、入力されたセンシングデータを順番に処理しますので、ビット化された
二つの波形データは、交互に(必ずしも、一周期ごと、という意味ではありません)、
波形解析のために、蓄えられていくということになります。

あくまでも、二つのデータを交互に入力されることになりますので、二つのセンサ
固有の動作周期による遅延、A/Dコンバートの時間など、時間差を生む要因を、
物性以外で、システムに起因したものをいくつか思いつきます。

装置の動作は、メカニカルですし、例えば、データ入力のサンプリング周期を把握
することも可能ですので、数理的に補正することは可能です。

このように、「問題ないであろう」、というところまで持っていくことは可能と考え
ますが、
レオロジー的には、完全粘性体、完全弾性体というのはない、というように、例えば、
位相差が0° 、または、位相差が90° であることが担保されている、標準物というもの
が存在しませんので、実地的に検証することが基本的にはできません。

また、この実地的な検証は、動的粘弾性の動作周波数を変化させ、確認したいところ
ですが、
例えば、ある程度、厳密性を許容し、ニュートン流体とされる物体(位相差 ≒ 90°)
を用い、検証したとしても、高周波数域、つまり短緩和時間領域で、ニュートン流体
である物体は、えてして、低粘度です。

動的粘弾性測定機器にとって、低粘度(正確には、低貯蔵弾性率)の物体を、高周波で
測定することは、条件として苦手な方向です。
ここでまた不確定要素、または、その苦手要素を数理的に解消するために、補正する
などの必要性が出てくるため、気色悪い感じになってきます。

以上は、単なる開発上の苦労話として、厳密な話をしていますが、実際には、この
ようなことをさしおいても、動的粘弾性測定器は、非常に有用で、興味深いデータを
与えてくれますので、ある程度、「このようなものだと」気楽に使うのが、良いように
思えます。


ようやく、本題に戻りたいと思います。

【実測シリーズ】コロナ自粛期間中 速報的 液膜粘弾性の測定
では、液膜の動的粘弾性の測定の実施例を紹介しましたが、現象的な観点では、妥当
に思えましたが、前例が見当たらないことや、システムの信頼性を検証していません
でしたので、測定結果の妥当性がよくわかりませんでした。

今回、同じシステムを用い、せん断ひずみによる動的粘弾性測定に応用しました。

ここで、粘度値が既知で、ニュートン流体とされている、シリコーンオイルを用い、
・位相差が90° 付近で検出されるのか
・複素粘度(動的粘弾性測定から得られる粘度値)が、基準値に対し妥当か
について検証を行ってみました。

まず、せん断ひずみについては、こちらをご参照ください。
粘弾性について7)_伸長粘度はなぜ3倍? ~その1~_せん断ひずみと伸長ひずみ
一般的な、粘度計、動的粘弾性測定器で採用されている、ひずみ形態です。

せん断ひずみとは、以下のような立方体要素を、互い違いにずらした時の変形です。


粘度測定では、どこまでもずらし続けていくという格好になりますが、動的粘弾性の
測定では、下図のように、


立方体形状の状態を原点とし、正に、負に、対照的に振動させ、絶対値として、
ひずみ量、応力を得ます。
なお、動的粘弾性では、
・振動周波数を固定し、振幅の大きさを変化(通常は、小から大へ)
・振幅の大きさを固定し、振動周波数を変化
させて、それぞれの応答特性を得て、解析するなどします。


以下に、振幅の大きさ(ひずみ量)を変化させたときの結果を、示します。


3種のシリコーンオイル、以下の粘度値のものを使用しました。

  青:5 Pa・s
  赤:1 Pa・s
  緑:0.3 Pa・s

低ひずみ量域では、グラフが平坦でないことがわかりますが、変位、荷重(力)が、
微小、微弱なため、装置のセンシング能力に原因があるものと思います。
この辺は、まだブラッシュアップの余地があるように思います。

ひずみ量が、ある程度大きくなり、データが安定している領域では、位相差は、
概ね90° 付近で平坦性を示しているかと思います。


次に、ひずみ量を固定し、周波数のみを変化させて、測定した結果を示します。


ここでも、3種のシリコーンオイル、以下の粘度値のものを使用しました。

  青:5 Pa・s
  赤:1 Pa・s
  緑:0.3 Pa・s

ここで縦軸は、複素粘度で、動的粘弾性の測定から得られる、粘度値です。
複素粘度は、緩和領域では、いわゆる通常の回転式粘度計によるせん断粘度と、同じ
値を示します。

ちなみに、この緩和領域では、角周波数とせん断速度は、等価であるという、
コックス-メルツの経験則があります。
非ニュートン流体を測定したとき、粘度低下する程度に高せん断速度領域の、せん断
粘度値に、複素粘度は合致しない、というように言いかえられます。

この結果では、複素粘度が角周波数に対して一定で、ニュートン流体であることを
示しており、粘度値も、それぞれ、基準値と同じ値を示しています。

複素粘度は、複素弾性率を、周波数[Hz] × 2π で割り算して得られます。 周波数の
計測が正しいとして、複素粘度が妥当な値であれば、複素弾性率も妥当であると言え
ます。

概ねニュートン流体といってよい、今回使用した、シリコーンオイルの、ひずみ依存
測定では、位相差が、90° 付近の値が出ていることも確認できました。

今回、せん断ひずみ用の治具は、急造したものを使用したり、
低ひずみ領域のセンシング能力、をはじめとして、
システムとして、まだまだブラッシュアップの課題はありますが、とりあえず、今回は、
まずまず、妥当な測定結果が得られたものと考えています。

また、複素弾性率と、位相差から計算される、貯蔵弾性率も、損失弾性率も、まずまず
妥当な結果になるものと、判断できます。

ちなみに、商品情報によれば、今回使用したシリコーンオイルは、高粘度タイプのもの
ほど、シアシニング特性(高せん断速度で、粘度低下する)が出る傾向にあるよう
なので、厳密には非ニュートン流体といえます。
そのため、十分なシアシニングが起きない、低せん断速度、または低ひずみ領域では、
貯蔵弾性率成分が、まったくないとは言えない、という点に注意が必要と思います。


今回の、せん断ひずみによる粘弾性測定の結果も踏まえまして、
【実測シリーズ】コロナ自粛期間中 速報的 液膜粘弾性の測定
での、液膜の動的粘弾性の測定の実施例について、再評価もいただければ幸いです。

今回、見えてきた課題もブラッシュアップしつつ、多機能で手軽に使用できる、
動的粘弾性測定システムとして、商品紹介できるまで、開発を継続したいと思います。


ここまで読んでいただき、ありがとうございました。


2020年7月27日月曜日

粘弾性について6)_動的粘弾性の測定原理


長らく先送りしてきた、動的粘弾性の測定原理について解説したいと思います。

前回、【実測シリーズ】コロナ自粛期間中 速報的 液膜粘弾性の測定 として、
動的粘弾性の実測例を紹介いたしました。

動的粘弾性の測定について、あまりよくご存じのない方には、内容があまりよく
伝わらなかったのではないかと思います。

本来、動的粘弾性の測定原理については、もう少し早い段階で、この内容を投稿
したいと考えておりましたが、遅まきながら、ようやく投稿にこぎつけました。


では、本題に移りたいと思います。


液体の流動抵抗は、粘性に起因し、粘度を測定することで、その抵抗の度合いを
調べることができます。
固体のかたさは、弾性に起因し、弾性率を測定することで、そのかたさを調べる
ことができます。

粘度にしても、弾性率にしても、ある物体のかたさ(的なもの)をあらわしている
ことに違いはありません。

ところが、完全な流体(粘性体)、完全な固体(弾性体)というのは、厳密には存在
せず、物体は、大なり小なり、粘性と弾性の要素をあわせもっている、粘弾性体です。

そのため、粘弾性の測定が重要になります。
粘弾性とは、さも一つの物性のように思えますが、単独で存在する物性ではないので、
ある一つの測定から、複合的に解析され、評価をします。

粘弾性は、横軸、縦軸に成分分けし、平面的に評価するという特徴をもとに、
粘弾性について1)_学校の定期試験を例にとった説明
粘弾性について2)_固体はかたい、液体はやわらかい?
にて、概念的な説明を行いました。



では、ここから具体的な説明に入りたいと思います。

まず、図1.をご覧ください。

図1.

滑車を用いて、ピストンを往復運動させている時のアニメーションです。
滑車が等速で円運動をしているとき、ピストンの位置を記録していくと、正弦波形
が得られます。
また、滑車の回転角度と、正弦波の横軸を対比させると、正弦波一周期は、360°
であることがわかります。

次にフックのバネ試験を、分銅の重さを連続的に変化させたとして、正弦振動で
行ってみたときのイメージが、以下、図2.になります。

図2.

刻々と変化する、ばねの位置(伸び)と、分銅の重さを連続的に記録すると、二つの
正弦波形が得られました。

二つの波形のピークの値、「重さ」を「伸び」で割り算すれば、弾性率が得られ、
振動をさせていようが何だろうが、本質的にはフックのバネ試験となんら変わらない
ことがわかります。

フックの法則に従い、重さと、伸びは比例関係ですので、ピークの値に限らず、同じ
タイミングどこでも二つの値の比をとれば弾性率が得られます。

実際に、縦軸に重さ、横軸に伸び、の関係であらわたしたのが、以下、図3.です。

図3.

このグラフの傾きが弾性率をあらわすことから、やはり、フックのバネ試験と、
何ら変わらないことがわかります。


次に、理想粘性体の場合の、荷重(力)と位置の関係性を、図4.に示します。

図4.

理想弾性体の時と異なり、力の波形が、位置波形に、90° 先行していることがわかり
ます。

力が、正または負で、最大値をとっているとき、位置波形は、原点位置にあります。
逆に、位置が、正または負で、最大の位置にあるとき、力は原点ライン上にあり、
つまり、力がゼロ、発生していないことになります。

ここで、ニュートンの粘性法則を思い出してください。

    [ 力 = 粘度 × 速度 ]

でした。
力は、速度に比例します。

ピストンは、原点ラインを通過するとき、最大の速度にあり、通過後、正、または
負のピーク位置にむかって減速し、折り返しとなるピーク地点では、瞬間的に速度
はゼロになります。

つまり、力波形は、ピストン位置の、速度状態に対応をしており、ニュートンの粘性
法則にしたがっていることになります。

位置を、時間について微分すると、速度になりますが、正弦波を微分すると、90°
シフトするというのは、なんとなく記憶にあるのではないかと思います。
数学的にも、上述のように現象論的にも、以上のように説明できます。


図3.では、同じタイミングで得られた、両波形の値の比をとれば、弾性率になる
ことを説明しました。
これは、フックのバネ試験と何ら変わらないと申しましたが、とりわけ、正弦振動
で測定を行った場合は、「複素弾性率」と呼びます。

次に、二つの正弦波形の位相の差に着目します。
位相差が0° の時、完全弾性体。
位相差が90° の時、完全粘性体。
0~90° の間にある時、粘弾性体であるということになります。

動的粘弾性の測定では、複素弾性率による、かたさ情報だけでなく、位相差の値から、
どの程度、弾性寄りなのか、粘性寄りなのか、性質の情報も与えてくれます。


ここまでは、三角関数の観点で説明をしてきたことになるのですが、オイラーの式
を用いることで、複素解析に結びつけることができます。
(ブログの目的、紙面の制限、筆者の説明能力、などの制約のため、オイラーの式に
ついてはふれません)

以下、図5.は、粘弾性について2)_固体はかたい、液体はやわらかい? の説明の
中で用いた評価例ですが、オイラーの式により、複素平面上に表すことができる
ようになります。

図5.

ここで、二つの正弦波の比である、複素弾性率は、かたさ情報を、ベクトルの長さ
としてあらわされます。
位相差は、原点位置における角度として、ベクトルの向きを決めています。
これにより、複素弾性率は、縦成分と横成分に成分分けすることができます。

縦軸は、損失弾性率といい、粘性成分(位相差90° の成分)を示し、虚数単位を
とります。
横軸は、貯蔵弾性率といい、弾性成分(位相差0° の成分)をしめし、実数です。


いかがでしたでしょうか。
複素数、虚数が出てくると、無条件で、「ややこしい」と思われてしまう面もある
ように思います。
実際には、かたさ(弾性率)を、単に、横・縦成分に、2成分分けしているのだな、
と理解すれば十分の測定・評価方法であると思います。


前回の、【実測シリーズ】コロナ自粛期間中 速報的 液膜粘弾性の測定 で紹介した
システムを用い、せん断ひずみによる動的粘弾性の測定への応用検証も、はじめて
おります。

次回、【実測シリーズ】として、ご紹介できればと考えています。


ここまで読んでいただき、ありがとうございました。


2020年5月15日金曜日

【実測シリーズ】Surfgauge 試作室_コロナ自粛期間中 速報的 液膜粘弾性の測定


前回の投稿から、だいぶん間があいてしまいました。

昨今のコロナ自粛期間中、いかがお過ごしでしょうか。


世の中、今回を機に、コロナ終了後も、在宅ワークの流れは促進されていくのかも
しれませんが、業務や時間効率が上がるのであれば、どんどんそのようになっていけば
良いのかなと思います。

私どもは、もともと在宅ワークの方式をとっていますが、特に不便を感じたことは
ありません。

ただ、今回のような自粛、緊急事態宣言下で、テンポラリーに在宅ワークを行っている
方は、お客様や、パートナーなどが稼働していなければ、やることもなくなってきて
しまうのではないかと想像します。

このような時は、「いつかやろう」、「ダメもとでやってみたかったこと」など、
最低の成果でもプラスマイナスゼロ、最悪でも会社やご自身に、損害を与えない結果
にしかならないようなことをやってみるのはいかがかと思いました。

申しました通り、もともと在宅ワークということもあり、ここまでの間、取り立てて
仕事のペースが変わることはなかったのですが、自粛の気分を変えたいと思い、
「いつかやろう」と考えていたこととして、液膜粘弾性測定装置の試作にトライして
みました。



前置きが長くなりましたが、今回のタイトルに戻りたいと思います。


当ブログでは、これまで、「粘弾性」に関係する内容がほとんどでした。

粘弾性については、主に、概念的なお話をさせていただきました。

粘弾性測定の実測については、本来は粘弾性の測定原理まで到達した後で投稿する、
という中期計画でした。

  ブログをかなりサボってしまっていたこと。
  「自粛の気分転換」。

これらはさることながら、
「液膜粘弾性の実測」については、なかなか目にすることはないはず、と思い、
今回、あげさせていただくことにしました。


いきなり測定データを示します。


白抜きのドットが貯蔵(バネ弾性)成分。
黒塗りのドットが損失(粘性)成分です。

バネ弾性、粘性成分については、よろしければ、こちらをどうぞ。
粘弾性について1)_学校の定期試験を例にとった説明
粘弾性について2)_固体はかたい、液体はやわらかい?

横軸は、周波数で、対数軸になっています。

食器用洗剤水溶液(確実にミセル濃度以上、正確な濃度は不明)の液(シャボン)膜
を作り、その膜をある方法で、ひっぱったり、縮めたりという動作を「正弦周期的」
に繰り返しました。

その際、膜の長さと、力の変化を、それぞれ正弦波のデータとして記録します。

変形の大きさと、力の関係から、弾性率が得られることを、
粘弾性について6)_伸長粘度はなぜ3倍? ~その1~_せん断ひずみと伸長ひずみ
で説明をいたしました。

これらの関係を正弦波で得ると、かたさである弾性率を、貯蔵成分と損失成分に分ける
ことができます。

この粘弾性の測定原理については、いずれの機会に投稿したいと思います。


往復運動の速度を上げていくと、特に貯蔵(バネ弾性)成分の顕著な上昇がみられます。


ミセル濃度を超える液膜には、洗剤に含まれる界面活性剤分子が、密に吸着し配向
しています。

界面活性剤の吸着密度に応じ、表面張力は低下します。

一方で、液膜を引き延ばし、表面積が増加すると、密であった界面活性剤が瞬間的
には「疎」の状態になりますので、液膜の表面では、界面活性剤濃度が低くなり、
瞬間的に表面張力は上昇します。
これは「ギブス弾性力」で説明されます。

液膜を引っ張ると、表面積を最小にして安定化をはかろうとする表面張力の作用に
より、縮まろうとしますので、表面張力はバネ弾性のように働きます。

以下、ウィキペディアで紹介されている動画を見ていただくと、イメージがよくつかめます。
https://en.wikipedia.org/wiki/Surface_tension

いっぽうで、「疎」になった隙間には、すぐに界面活性剤が移動してきて、密の状態
になるため、表面張力を低下させます。
このメカニズムを「マランゴニ効果」とよびます。

高周波数領域では、液膜の表面積の増加に、界面活性剤の移動がおいつかないため、
弾性率が上昇し、
周波数が低い領域では、界面活性剤の移動がじゅうぶんにおいつくため、弾性率は
上昇することなく、安定していると、グラフからは理解できそうです。

低周波数領域では、弾性成分が粘性成分を上回り、並行で平坦なグラフになって
いますが、配向した界面活性剤が、構造として液膜の安定に寄与しているのでは
ないかと想像します。


いかがでしょうか。


今回、試験を行ってみて、例えば、

  起泡性、泡安定性、フォーミング、テクスチャーなどを検討する際の、液膜物性
  の評価。
  目的に合わせた材料設計時の、界面活性剤の選定。

などに、実用性のある測定方法になるのではないかと思いました。

試作機をブラッシュアップしながら、色々な液体を試してみたいというように思い
ました。


ここまで読んでいただき、ありがとうございました。