2020年7月28日火曜日

【実測シリーズ】Surfgauge 試作室_せん断ひずみによる、動的粘弾性の測定


以前、
【実測シリーズ】コロナ自粛期間中 速報的 液膜粘弾性の測定
では、液膜の動的粘弾性の測定の実施例について、投稿をいたしました。

掲載しているデータは、マランゴニ効果、ギブス弾性力による、現象面視点の説明
からは、理にかなっているのでは、と、まとめました。

しかし、液膜を直接、延伸・収縮させる動作から、動的粘弾性の測定原理を利用し、
動的粘弾性パラメータを得て、解析、という実例が見つからないため、このデータの
妥当性が、よくわからないところはあります。

動的粘弾性の測定原理ついては、
粘弾性について6)_動的粘弾性の測定原理
をご参照ください。

このページでも解説している通り、応力とひずみ、両正弦波の振幅の比と、位相の差
が得られれば、動的粘弾性の測定、解析は可能です。

あるデータ範囲において、二つの波形それぞれの振幅値を検出し、その比をとって
複素弾性率を解析することは、システムとして、さほど難しいことではありません。

問題は、位相差の正しい測定と、その検証ではないかと思います。

動的粘弾性測定器は、主に、荷重(力)、位置の二つのセンシングデータを取得し、
後は、ほぼすべて、計算のみで成立しています。

システムは、入力されたセンシングデータを順番に処理しますので、ビット化された
二つの波形データは、交互に(必ずしも、一周期ごと、という意味ではありません)、
波形解析のために、蓄えられていくということになります。

あくまでも、二つのデータを交互に入力されることになりますので、二つのセンサ
固有の動作周期による遅延、A/Dコンバートの時間など、時間差を生む要因を、
物性以外で、システムに起因したものをいくつか思いつきます。

装置の動作は、メカニカルですし、例えば、データ入力のサンプリング周期を把握
することも可能ですので、数理的に補正することは可能です。

このように、「問題ないであろう」、というところまで持っていくことは可能と考え
ますが、
レオロジー的には、完全粘性体、完全弾性体というのはない、というように、例えば、
位相差が0° 、または、位相差が90° であることが担保されている、標準物というもの
が存在しませんので、実地的に検証することが基本的にはできません。

また、この実地的な検証は、動的粘弾性の動作周波数を変化させ、確認したいところ
ですが、
例えば、ある程度、厳密性を許容し、ニュートン流体とされる物体(位相差 ≒ 90°)
を用い、検証したとしても、高周波数域、つまり短緩和時間領域で、ニュートン流体
である物体は、えてして、低粘度です。

動的粘弾性測定機器にとって、低粘度(正確には、低貯蔵弾性率)の物体を、高周波で
測定することは、条件として苦手な方向です。
ここでまた不確定要素、または、その苦手要素を数理的に解消するために、補正する
などの必要性が出てくるため、気色悪い感じになってきます。

以上は、単なる開発上の苦労話として、厳密な話をしていますが、実際には、この
ようなことをさしおいても、動的粘弾性測定器は、非常に有用で、興味深いデータを
与えてくれますので、ある程度、「このようなものだと」気楽に使うのが、良いように
思えます。


ようやく、本題に戻りたいと思います。

【実測シリーズ】コロナ自粛期間中 速報的 液膜粘弾性の測定
では、液膜の動的粘弾性の測定の実施例を紹介しましたが、現象的な観点では、妥当
に思えましたが、前例が見当たらないことや、システムの信頼性を検証していません
でしたので、測定結果の妥当性がよくわかりませんでした。

今回、同じシステムを用い、せん断ひずみによる動的粘弾性測定に応用しました。

ここで、粘度値が既知で、ニュートン流体とされている、シリコーンオイルを用い、
・位相差が90° 付近で検出されるのか
・複素粘度(動的粘弾性測定から得られる粘度値)が、基準値に対し妥当か
について検証を行ってみました。

まず、せん断ひずみについては、こちらをご参照ください。
粘弾性について7)_伸長粘度はなぜ3倍? ~その1~_せん断ひずみと伸長ひずみ
一般的な、粘度計、動的粘弾性測定器で採用されている、ひずみ形態です。

せん断ひずみとは、以下のような立方体要素を、互い違いにずらした時の変形です。


粘度測定では、どこまでもずらし続けていくという格好になりますが、動的粘弾性の
測定では、下図のように、


立方体形状の状態を原点とし、正に、負に、対照的に振動させ、絶対値として、
ひずみ量、応力を得ます。
なお、動的粘弾性では、
・振動周波数を固定し、振幅の大きさを変化(通常は、小から大へ)
・振幅の大きさを固定し、振動周波数を変化
させて、それぞれの応答特性を得て、解析するなどします。


以下に、振幅の大きさ(ひずみ量)を変化させたときの結果を、示します。


3種のシリコーンオイル、以下の粘度値のものを使用しました。

  青:5 Pa・s
  赤:1 Pa・s
  緑:0.3 Pa・s

低ひずみ量域では、グラフが平坦でないことがわかりますが、変位、荷重(力)が、
微小、微弱なため、装置のセンシング能力に原因があるものと思います。
この辺は、まだブラッシュアップの余地があるように思います。

ひずみ量が、ある程度大きくなり、データが安定している領域では、位相差は、
概ね90° 付近で平坦性を示しているかと思います。


次に、ひずみ量を固定し、周波数のみを変化させて、測定した結果を示します。


ここでも、3種のシリコーンオイル、以下の粘度値のものを使用しました。

  青:5 Pa・s
  赤:1 Pa・s
  緑:0.3 Pa・s

ここで縦軸は、複素粘度で、動的粘弾性の測定から得られる、粘度値です。
複素粘度は、緩和領域では、いわゆる通常の回転式粘度計によるせん断粘度と、同じ
値を示します。

ちなみに、この緩和領域では、角周波数とせん断速度は、等価であるという、
コックス-メルツの経験則があります。
非ニュートン流体を測定したとき、粘度低下する程度に高せん断速度領域の、せん断
粘度値に、複素粘度は合致しない、というように言いかえられます。

この結果では、複素粘度が角周波数に対して一定で、ニュートン流体であることを
示しており、粘度値も、それぞれ、基準値と同じ値を示しています。

複素粘度は、複素弾性率を、周波数[Hz] × 2π で割り算して得られます。 周波数の
計測が正しいとして、複素粘度が妥当な値であれば、複素弾性率も妥当であると言え
ます。

概ねニュートン流体といってよい、今回使用した、シリコーンオイルの、ひずみ依存
測定では、位相差が、90° 付近の値が出ていることも確認できました。

今回、せん断ひずみ用の治具は、急造したものを使用したり、
低ひずみ領域のセンシング能力、をはじめとして、
システムとして、まだまだブラッシュアップの課題はありますが、とりあえず、今回は、
まずまず、妥当な測定結果が得られたものと考えています。

また、複素弾性率と、位相差から計算される、貯蔵弾性率も、損失弾性率も、まずまず
妥当な結果になるものと、判断できます。

ちなみに、商品情報によれば、今回使用したシリコーンオイルは、高粘度タイプのもの
ほど、シアシニング特性(高せん断速度で、粘度低下する)が出る傾向にあるよう
なので、厳密には非ニュートン流体といえます。
そのため、十分なシアシニングが起きない、低せん断速度、または低ひずみ領域では、
貯蔵弾性率成分が、まったくないとは言えない、という点に注意が必要と思います。


今回の、せん断ひずみによる粘弾性測定の結果も踏まえまして、
【実測シリーズ】コロナ自粛期間中 速報的 液膜粘弾性の測定
での、液膜の動的粘弾性の測定の実施例について、再評価もいただければ幸いです。

今回、見えてきた課題もブラッシュアップしつつ、多機能で手軽に使用できる、
動的粘弾性測定システムとして、商品紹介できるまで、開発を継続したいと思います。


ここまで読んでいただき、ありがとうございました。


0 件のコメント:

コメントを投稿